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An adaptive dynamic Taylor Kriging (ADTK) is developed and combined with the particle swarm optimization algorithm to get a 

numerically efficient optimization strategy. In the ADTK, the optimal basis function set is dynamically selected so that the generated 

surrogate model may have better accuracy. An adaptive sampling method about how many sampling points are required for a specific 

fitting accuracy is proposed. The proposed approach was tested on the analytic function and the TEAM 25 problem. 
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I. INTRODUCTION 

EURISTIC OPTIMIZATION algorithms such as particle swarm 

optimization (PSO) and differential evolution are widely 

being used in the optimal design of electromagnetic devices. 

However, they in general require a large number of objective 

function evaluations, and this often limits their application to 

engineering problems through direct combination with finite 

element analysis (FEA) [1]-[2]. As a solution to this, Kriging 

models such as ordinary Kriging, universal Kriging and Taylor 

Kriging have been developed to construct a surrogate objec-

tive function from the objective function values calculated on 

limited number of sampling points. 

The fitting accuracy (or prediction accuracy) of the Kriging 

models, however, strongly depends on the problem as well as 

the number and locations of sampling points. The problem 

dependency of the Kriging models is very recently reported to 

be mitigated by introducing dynamic version of Kriging model 

which optimally selects its basis functions among its originally 

ones [3]. For the number and locations of the sampling points 

which guarantee a desired fitting accuracy, however, any reli-

able algorithm is not presented yet except that the more sam-

pling points and the higher fitting accuracy. 

In this paper, a novel adaptive dynamic Taylor Kriging is 

suggested for the application to optimal design of electromag-

netic devices by combining dynamic Taylor Kriging with an 

adaptive sampling method. Furthermore, a reliable algorithm 

for the decision of minimal required number of sampling 

points and estimation of fitting error are proposed. Through 

applications to an analytic function and TEAM 25, the validity 

of the developed algorithm is investigated. 

II.  DYNAMIC TAYLOR KRIGING 

For an arbitrary point x in design space, the dynamic Taylor 

Kriging (DTK) predicts a function value as follows: 
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where N is the number of sampling points, Z(xi) is the 

objective function value at the point xi and the weighting 

coefficient λi(x) is found from the following equations: 
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where K is the number of basis functions, Cov(∙,∙) is the 

Gaussian covariance function, δ is Lagrange multiplier, and 

the basis function bk(x) is defined as follows [4]:  
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where x0 is the mean value of all sampling points.  

In constrast to other Kriging models such as ordinary Kring, 

universal Kriging and Taylor Kriging, the DTK optimally 

selects its basis functions to minimize its fitting error [3]. In 

this paper, the set of optimal basis functions is found by 

solving the following equation using an improved B-PSO 

algorithm proposed in [5]:   
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where Cp is an arbitrary combination of basis functions, xi (i=1, 

2, ···, NTS) is the test points, and d(∙) is the bandwidth of the 1-

α level prediction interval which is defined as:  

2
1 / 2 p

2 2
p

( ) 2 ( )

( ) [1 ( ) ( ) 2 ( ) ( )]T T

d Z  

 



  

x x

x λ x Rλ x λ x r x  
(5) 

where Z1-α/2 is the α-level quantile of the standard normal dis-

tribution (α is set to 1.95 in this paper), r(x) is correlation vec-

tor, R is the Gaussian correlation matrix and σ
2 
is the variance 

of the fitting error.  

III. ADAPTIVE DYNAMIC TAYLOR KRIGING 

A. Fitting Error Estimation  

After a given number of initial sampling points are generat-

ed based on their geometric distribution by using Latin hyper-

cube design (LHD), a Kriging surrogate model bounds its fit-

ting error as follows: 
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where Z
*
(x) and Z(x) are predicted value from a surrogate 

model and true function value at x, respectively.  
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B. Adaptive Insertion of Sampling Point   

If the fitting error is not small enough, new sampling points 

are selected adaptively among the test points, Xtest, based on 

the following rule using (5): 

 new test( ) ,d   X x x x X
 

(7) 

where the tolerance ε is, in this paper, set to 10
-4

. The smaller 

the tolerance is taken, the smaller the fitting error is expected.  

C. Termination Criterion   

The adaptive sampling insertion may be repeated until the 

termination criterions Avg(XS
k
) and Max(XS

k
) are both 

satisfied. The termination criterion can be defined as follows: 
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where XS
k
 is the set of sampling points at k-th iteration, Efitting 

is defined from (6), and NTS is the number of testing points. 

IV. APPLICATIONS TO OPTIMAL DESIGN 

In order to investigate and compare the fitting accuracy of 

the surrogate models, an analytic test function is selected as: 
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and the root mean square error (RMSE) and the maximal error 

are defined as follows: 
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where the number of test points NTS is set to 1600. 

Fig. 1 shows the behavior of the average fitting error 

Avg(XS) together with the RMSE for the adaptive dynamic 

Taylor Kriging (ADTK) model, and Fig. 2 shows the behavior 

of the maximal fitting error Max(XS) together with the 

maximal error for the ADTK model, where it is found that 

Avg(XS) and Max(XS) are both good metrics for the real fitting 

error. Firstly, the initial 25 sampling points are generated by 

using LHD, and the additional sampling points are adaptively 

inserted to have totally 70 sampling points. Table I compares 

the optimization results obtained by using the PSO algorithm 

combined with the ADTK model (ADTK-PSO) and directly 

PSO algorithm. The adaptive sampling method can yield the 

enough sampling points for reducing computing time. 

Therefore, it shows the DTK model with adaptive sampling 

method can generate an accurate surrogate model very 

efficiently. 

In the version of full paper, the developed algorithm will be 

applied to TEAM 25, a strongly non-linear problem, and its 

effectiveness will be demonstrated.   
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Algorithm: Adaptive Dynamic Taylor Kriging 

1. Initial sampling and test points 

▪ Generate N sampling points using Latin hypercube design, 

and prepare NTS test points which are uniformly distributed. 

▪ Set the tolerance ε for d(x). 

2. Construct DTK  

▪ For all sampling points, calculate the objective function and 

constraint function values by using finite element analysis. 

▪ Find an optimal basis functions by using the B-PSO algo-

rithm, and construct the DTK model. 

▪ Calculate d(x) for all NTS test points, and if Avg(XS) ≤10-3 

and Max(XS) ≤10-3, then terminate.   

3. Adaptive sampling  

▪ Select Nstep test points in the order of d(x), and insert them in-

to the set of sampling points.  

▪ Go to Step 2. 
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Fig. 1 Behavior of average of fitting error in ADTK model 

20 40 60 80 100

0.001

0.002

0.003

0.004

0.005

V
al

u
e

Number of sampling points

 Maxerror

 Max(X
S
)

 
Fig. 2 Behavior of maximal fitting error in ADTK model 

TABLE I 

OPTIMIZATION RESULTS FOR ANALYTIC FUNCTION 

Method Optimum point Objective value Calls 

ADTK-PSO [-0.0062, 1.5798] 8.1058 70 

PSO [-0.0061, 1.5808] 8.1061 3000 

 


